Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1
نویسندگان
چکیده
An important mechanism for Al(3+) tolerance in wheat is exudation of malate anions from the root apex through activation of malate-permeable TaALMT1 channels. Here, the effect of ethylene on Al(3+)-activated efflux of malate was investigated using Al(3+)-tolerant wheat genotype ET8, which has high expression of TaALMT1. Exposure of ET8 plants to Al(3+) enhanced ethylene evolution in root apices. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene gas suppressed Al(3+)-induced malate efflux from root apices, whereas the intracellular malate concentrations in roots were not affected. Malate efflux from root apices was enhanced in the presence of Al(3+) by two antagonists of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and 2-aminoisobutyric acid (AIB). An increase in Al accumulation in root apices was observed when treated with ACC, whereas AVG and AIB suppressed Al accumulation in root apices. Al(3+)-induced inhibition of root elongation was ameliorated by pretreatment with AIB. In addition, ethylene donor (Ethrel) also inhibited Al(3+)-induced malate efflux from tobacco cells transformed with TaALMT1. ACC and the anion-channel blocker niflumate had a similar and non-additive effect on Al-induced malate efflux from root apices. Treatment of ET8 plants with ACC enhanced expression of TaALMT1, suggesting that the inhibitory effect of ethylene on Al-induced malate efflux is unlikely to occur at the transcriptional level. These findings indicate that ethylene may behave as a negative regulator of Al(3+)-induced malate efflux by targeting TaALMT1-mediated malate efflux by an unknown mechanism.
منابع مشابه
Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells.
TaALMT1 encodes a putative transport protein associated with Al(3+)-activated efflux of malate from wheat root apices. We expressed TaALMT1 in Nicotiana tabacum L. suspension cells and conducted a detailed functional analysis. Protoplasts were isolated for patch-clamping from cells expressing TaALMT1 and from control cells (empty vector transformed). With malate(2-) as the permeant anion in the...
متن کاملEnhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3
Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correl...
متن کاملHvALMT1 from barley is involved in the transport of organic anions
Members of the ALMT gene family contribute to the Al(3+) resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al(3+) resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the grea...
متن کاملA second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.
The first confirmed mechanism for aluminum (Al) resistance in plants is encoded by the wheat (Triticum aestivum) gene, TaALMT1, on chromosome 4DL. TaALMT1 controls the Al-activated efflux of malate from roots, and this mechanism is widespread among Al-resistant genotypes of diverse genetic origins. This study describes a second mechanism for Al resistance in wheat that relies on citrate efflux....
متن کاملDecreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 65 شماره
صفحات -
تاریخ انتشار 2014